
A Vision on Algebraic Flows for
Declarative Resource Descriptions

Jitse De Smet, Ruben Verborgh, Ruben Taelman

Ghent University – imec – IDLab, Belgium

Research Foundation - Flanders

1

https://jitsedesmet.be/
https://www.rubensworks.net/
https://www.rubensworks.net/
http://idlab.technology/
https://www.fwo.be/en/

Overview
Veterinarian use case

Related Work

Vision

Conclusion

2

Veterinarian use case

pet owner

🐈

💉

other
doctor

🧑‍⚕️

regular
doctor

3

Overview

Related Work

Veterinarian use case

Vision

Conclusion

4

RPC/ Syntactic descriptions fail to
describe relationships

WADL

OpenAPI/ Swagger

AsyncAPI

Can be used as documentation and to

generate skeleton of client side code.

POST
/owners

my doctor's
<database>

GET
/owners

GET
/owners/{id}

POST
/owner/{id}/{pet-

id}/change-owner

🧑‍⚕️

5

https://www.w3.org/submissions/wadl/
https://swagger.io/specification/
https://www.asyncapi.com/en

MCP introduces ambiguity
Standard for connecting AI applications to external systems

Builds on JSON-RPC spec

Example interface description:
{
 "jsonrpc": "2.0",
 "id": 2,
 "result": {
 "tools": [
 {
 "name": "get_owner_and_pets",
 "title": "Owner Information",
 "description": "Retrieves all information about an owner and their pets registered with 'heathy pet co.'",
 "inputSchema": {
 "type": "object",
 "properties": {
 "id": {
 "type": "string",
 "description": "The systems uuid-v4 used to represent the owner as registered in the system"
 }
 },
 "required": ["id"]
 }
 },
]
 }
} (docs)

create_owner_with_pet

my doctor's
<database>

get_all_owners

get_owner_and_petchange_owner_of_pet

🧑‍⚕️

6

https://www.jsonrpc.org/
https://modelcontextprotocol.io/docs/learn/architecture#how-this-works-in-ai-applications
https://modelcontextprotocol.io/docs/getting-started/intro
https://modelcontextprotocol.io/docs/getting-started/intro

Semantic Web Descriptions cannot model
underlying resources

Hydra, OWL-S, RESTdesc

Model RESTful interactions well
(GET, PUT, PATCH, DELETE, POST)

Do not model underlying resources

POST
/owners

my doctor's
<database>

GET
/owners

GET
/owners/{id}

POST
/owner/{id}/{pet-

id}/change-owner
🧑‍⚕️

all owners resource

owner resource
(many)?!

?!

7

https://www.markus-lanthaler.com/hydra/
https://restdesc.org/

Query-Based interfaces can be cost
heavy, inherently symmetrical, or
resemble RPC

SPARQL endpoint, GraphQL

SPARQL endpoint only models 1 resource, the data

GraphQL functions describes like RPC

Both tie into an 'expensive' execution environment

add owner Pets with owner

All owners and
pets

change owner

QueriesMutations

my doctor's
<database>

🧑‍⚕️

my doctor's
<database>

🧑‍⚕️
SPARQL

8

https://query.wikidata.org/
https://graphql.org/

Overview

Vision

Veterinarian use case

Related Work

Conclusion

9

Goals
Execution environment independent

Models intermediate resources (asymmetric interfaces)

Deterministic description of relationship between resources

Standing on the shoulders of giants

<create-owners>

my doctor's
<database>

<get-owners>

<get-owner><change-owners>

🧑‍⚕️

1.

2.

3.

4.

10

Algebraic Descriptions over RDF data
Get Interface Description, discover <create-owner> with:

Interaction method: POST to /owners

Resource representation: Turtle

Expected data shape: SPARQL ASK

Consequence of success: SPARQL update on <database>
INSERT {
 GRAPH <database> {
 ?ownerBound a ex:owner ;
 ex:name ?name ; ex:pet ?petBound .
 ?petBound a ex:pet ;
 ex:name ?petName ; ex:age ?age .
 }
} WHERE {
 ?resource ex:name ?name ;
 BIND(UUID() AS ?ownerUuid) .
 ?resource ex:pet ?pet .
 BIND(UUID() AS ?petUuid).
 ?pet ex:name ?petName ;
 ex:age ?age ;
 BIND(URI(CONCAT(ex:owners, '/', ?ownerUuid)) AS ?ownerBound) .
 BIND(URI(CONCAT(?ownerBound, '/', ?petUuid)) AS ?petBound) .
}

<create-owners>

my doctor's
<database>

<get-owners>

<get-owner><change-owners>

Register
me and my pets
🐈🐈‍⬛ pet owner

🐈

🧑‍⚕️

1.

2.

3.

4.

11

Derivation over an underlying resource
Get Interface Description, discover <get-owners> and <get-owner> with:

Interaction method: GET to /owners and GET to /owner/{id}

Resource representation: Turtle

No expected data, but consequence of success a SPARQL CONSTRUCT
CONSTRUCT { [] ex:item ?owner . } WHERE {
 GRAPH <database> {
 ?owner a ex:owner .
 }
}

CONSTRUCT {
 ?id a ex:owner ;
 ?ownerP ?ownerO ;
 ?ownerO ?petP ?petO ;
} WHERE {
 GRAPH <database> {
 ?id a ex:owner ;
 ?ownerP ?ownerO ;
 OPTIONAL { ?ownerO ?petP ?petO . }
 }
}

<create-owners>

my doctor's
<database>

<get-owners>

<get-owner><change-owners>

💉

other
doctor

What is the medical
background of these

cats?

🧑‍⚕️

1.

2.

3.

12

Beyond REST: consistency boundary
Get Interface Description, discover <change-owner> using interaction method:

POST to /change-owners/{id}/{pet-id}
DELETE {
 GRAPH <database> {
 ?origOwner ex:pet ?orig-pet .
 ?origPet a ex:pet ;
 ex:age ?age ;
 ex:name ?name .
 }
} INSERT {
 GRAPH <database> {
 ?newOwner ex:pet ?movedIri .
 ?movedIri a ex:pet ;
 ex:age ?age
 ex:name ?name
 }
} WHERE {
 # From received data:
 ?o ex:new-owner ?newOwner .
 BIND(URI(CONCAT(ex:owners, '/', ?id)) AS ?origOwner) .
 BIND(URI(CONCAT(?origOwner, '/', ?petId)) AS ?origPet) .
 BIND(URI(CONCAT(?newOwner, '/', ?petId)) AS ?movedIri) .
 # Go look in the current state of the database for whether the owner and pet exist.
 GRAPH <database> {
 ?origOwner ex:pet ?origPet .
 ?origPet a ex:pet ;
 ex:age ?age ;
 ex:name ?name .
 ?newOwner a ex:owner ;
 }
}

<create-owners>

my doctor's
<database>

<get-owners>

<get-owner><change-owners>

I bought 🐱,
transfer the owner pet owner

🐈

🧑‍⚕️

13

Conclusion
Endpoint discovery

Infer downstream effect of modifications

Using existing query writing skills

Future work

Formalization

Fine-grained, policy aware semantics

Proof of Concept

1.

2.

3.

1.

2.

3.

<create-owners>

my doctor's
<database>

<get-owners>

<get-owner><change-owners>

Register
me and my pets
🐈🐈‍⬛ pet owner

🐈 💉

other
doctor

What is the medical
background of these

cats?

🧑‍⚕️

14

Additional

Related Issues
By explicitly describing the algebraic mappings, you enter the database realm:

View selection (what to materialize)

Schema transformation/ migration (when original resource is not accessible)

Query rewriting using materialized views

(targeting some resource, can you rewrite using views)

The View Update Problem (when you target non-materialized resources)

Incremental view maintenance (can be interesting for large views)

New stuff too: what endpoints to call and how, given an update

1.

2.

3.

4.

5.

6.

https://www.vldb.org/conf/2001/P059.pdf
https://en.wikipedia.org/wiki/Schema_migration
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-auto-rewrite.html
https://dl.acm.org/doi/10.1145/77643.77645
https://wiki.postgresql.org/wiki/Incremental_View_Maintenance

