A Vision on Algebraic Flows for
Declarative Resource Descriptions

Jitse De Smet, Ruben Verborgh, Ruben Taelman
Ghent University — imec — IDLab, Belgium

Research Foundation - Flanders

https://jitsedesmet.be/
https://www.rubensworks.net/
https://www.rubensworks.net/
http://idlab.technology/
https://www.fwo.be/en/

Overview

Veterinarian use case
Related Work
Vision

Conclusion

Veterinarian use case

pet owner
regular other
doctor doctor

O
= 9

S

Overview

Veterinarian use case
Related Work
Vision

Conclusion

RPC/ Syntactic descriptions fail to
describe relationships

WADL

OpenAPI/ Swagger

GET
/owners

POST
/owners

AsyncAPI

POST

Can be used as documentation and to fownerf{id}/{pet-

id}/change-owner

GET
/lowners/{id}

generate skeleton of client side code.

https://www.w3.org/submissions/wadl/
https://swagger.io/specification/
https://www.asyncapi.com/en

MCP introduces ambiguity

Standard for connecting Al applications to external systems

get_all_owners

Builds on JSON-RPC spec el

change_owner_of_pet
€. —oLp my doctor's

Example interface description:
{

"jsonrpc": "2.0",
"id": 2,
"result": {
"tools": [
{
"name" : "get_owner_and_pets",
"title": "Owner Information",
"description": "Retrieves all information about an owner and their pets registered with 'heathy pet co.'",
"inputSchema": {
"type": "object",
"properties”: {

get_owner_and_pet

"id": {
"type": "string",
"description”: "The systems uuid-v4 used to represent the owner as registered in the system"

“}equired”: ["id"]
I
]
}
} (docs)

@ Model Context Protocol

https://www.jsonrpc.org/
https://modelcontextprotocol.io/docs/learn/architecture#how-this-works-in-ai-applications
https://modelcontextprotocol.io/docs/getting-started/intro
https://modelcontextprotocol.io/docs/getting-started/intro

Semantic Web Descriptions cannot model
underlying resources

Hydra, OWL-S, RESTdesc

posT ?!
Jowner/{id}/{pet-

Model RESTful interactions well 2 hlenange-owmer ~ Jounersc)
(GET, PUT, PATCH, DELETE, POST)

Do not model underlying_resources

https://www.markus-lanthaler.com/hydra/
https://restdesc.org/

Query-Based interfaces can be cost
heavy, inherently symmetrical, or
resemble RPC Fed

<
SPARQL
SPARQL endpoint, GraphQL Q
SPARQL endpoint only models 1 resource, the data g
GraphQL functions describes like RPC my doctor's

<database>

Both tie into an 'expensive' execution environment

oooooooooo

https://query.wikidata.org/
https://graphql.org/

Overview

Veterinarian use case
Related Work
Vision

Conclusion

> W DhoE

Goals

Execution environment independent

Models intermediate resources (asymmetric interfaces)

Deterministic description of relationship between resources

Standing on the shoulders of giants

<create-owners> Q <get-owners>
<change-owners> , <get-owner>
my doctor's

<database>

10

> W N

Algebraic Descriptions over RDF data

Get Interface Description, discover <create-owner> with:
Interaction method: POST to /owners

Resource representation: Turtle

Expected data shape: SPARQL ASK

Consequence of success: SPARQL update on <database>

INSERT {
GRAPH <database> { Register
?2ownerBound a ex:owner ; meaﬁdmypas
ex:name ?name ; ex:pet ?petBound .
?petBound a ex:pet ;
ex:name ?petName ; ex:age ?age . a

} WHERE { <create-owners> Q
?resource ex:name ?name ;

BIND(UUID() AS ?ownerUuid) .
?resource ex:pet ?pet .
BIND(UUID() AS ?petUuid).
?pet ex:name ?petName ;
ex:age ?age ;
BIND(URI(CONCAT(ex:owners, '/', ?ownerUuid)) AS ?ownerBound) .
BIND(URI(CONCAT(?ownerBound, '/', ?petUuid)) AS ?petBound) .

pet owner

my doctor's
<database>

11

Derivation over an underlying resource

Get Interface Description, discover <get-owners> and <get - owner> with:
. Interaction method: GET to /owners and GET to /owner/{id}
. Resource representation: Turtle

. No expected data, but consequence of success a SPARQL CONSTRUCT

CONSTRUCT { [] ex:item ?owner . } WHERE {
GRAPH <database> {

?owner a ex:owner .
What is the medical

} other background of these
doctor cats?
CONSTRUCT { 4
?id a ex:owner ; g

GRAPH <database> {
?id a ex:owner ;

?ownerP ?owner0 ; <create. .]
?owner0 ?petP ?pet0 ; create-owners ga <get-owners>
} WHERE {

. <get-owner>
?ownerP ?ownerO ; my doctor's =

OPTIONAL { ?ownerQ ?petP ?petO . } <database>

}
}

Beyond REST: consistency boundary

Get Interface Description, discover <change-owner> using interaction method:

POST to /change-owners/{id}/{pet-id}

DELETE {
GRAPH <database> { | bought =,
?origOwner ex:pet ?orig-pet . transfer the owner pet owner
?origPet a ex:pet ; o
ex:age ?age ;
ex:name ?name . e
} INSERT { <create-owners> <get-owners>
GRAPH <database> { &
?newOwner ex:pet ?movedIri .
?movedIri a ex:pet ; g
ex:age ?age
) ex:name ?name <change-owners> my doctor's <get-owner>
} WHERE { <database>

From received data:
?0 ex:new-owner ?newOwner .
BIND(URI(CONCAT(ex:owners, '/', ?id)) AS ?origOwner)
BIND(URI(CONCAT(?origOwner, '/', ?petId)) AS ?origPet)
BIND(URI(CONCAT(?newOwner, '/', ?petId)) AS ?movedIri)
Go look in the current state of the database for whether the owner and pet exist.
GRAPH <database> {
?0rigOwner ex:pet ?origPet .
?origPet a ex:pet ;
ex:age ?age ;
ex:name ?name .
?newOwner a ex:owner ;

13

Conclusion

. Endpoint discovery
. Infer downstream effect of modifications

. Using existing query writing skills

Future work

. Formalization

. Fine-grained, policy aware semantics

. Proof of Concept

Register What is the medical
me and my pets other background of these
¥R pet owner doctor cats?

0 9
o
S

<change-owners> , <get-owner>
my doctor's

<database>

<create-owners> <get-owners>

14

Additional

Related Issues

By explicitly describing the algebraic mappings, you enter the database realm:

. View selection (what to materialize)

. Schema transformation/ migration (when original resource is not accessible)
. Query rewriting using materialized views

(targeting some resource, can you rewrite using views)

. The View Update Problem (when you target non-materialized resources)

. Incremental view maintenance (can be interesting for large views)

. New stuff too: what endpoints to call and how, given an update

https://www.vldb.org/conf/2001/P059.pdf
https://en.wikipedia.org/wiki/Schema_migration
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-auto-rewrite.html
https://dl.acm.org/doi/10.1145/77643.77645
https://wiki.postgresql.org/wiki/Incremental_View_Maintenance

